Diagnosing and speeding up a slow Drupal
web site
A Case Study

Khalid Baheyeldin
January 15, 2009
http://2bits.com

FEUMS

Agenda =bits

..

e Case study

- The problem
— Diagnosis
- Analysis
- Solution
« Background info where relevant

e Discussion

The Problem =hits

¢

» Getting a good description of the problem is the
first step

e Bad

- “It does not work” (What is “it” and what is “work”™?)
- “We have problems” (What “problem”?)

e (Good

- “Site is slow when we have lots of visitors”
- “Site is slow all the time”

“Server is under heavy load (CPU and memory)

Case Study =bits

¢

e Vancouver Island Paragliding
(viparagliding.com)

 Built by Vibe Computing

* Pushed off shared hosting because of resource
usage

« Went to VPS (managed)
o Still “feels sluggish” despite that

e Hosting Environment =bits

 Virtual Private Server (VPS)

 Managed (can't change things yourself, have to
pay for changes)

e Hosted on Dual Core Intel Core2 @ 1.2GHz
e 512MB

 SSH available, but in a jailshell

 What does <?php phpinfo(); say?

é Quantify the problem =nits

« Backend or Front End?
- Backend

e Hardware
» Database
« PHP
 Drupal

- Front End

« CSS/JS
* Images

 Number of HTTP requests per page

Back End: Devel =hits

¢

e Use Devel module

- How many milliseconds per page?
- How many millseconds in the database?

Page execution time was 1064.54 ms. Executed 389
qgueries in 108.58 milliseconds.

Devel (Cont'd) =bits

¢

« Total page time

» Simple sites: 300ms to 500ms
- More complex sites: 600ms to 800ms

— Over 1000 ms is definitely a red flag!
 Number of queries
- 400-500 should be OK (what they are also)
— Over 500 means the site is complex
e Time for Queries

- Absolute and relative to total page time

Q Performance Logging —pite

« Started as an independent project by 2bits
 Now part of Devel (5.x, 6.x and 7.x, in -dev)
« Aims at collecting info for analysis of performance

- Which pages use most queries
— Which pages use most time to generate

- Average and maximums

- Logs to database (dev/test) or APC (ok for live
sites)

— Can be combined with stress testing (ab/siege)

Diagnosis =bits

e
‘__.-"

» A proper diagnosis is essential for any solutions
» Otherwise, you are running blind

 Like a doctor who says “let us try medicine A,
and surgery B, as well as procedure C, and see
maybe things will get better” without lab tests
and examinations!

 Must be based on proper data
» Analysis of the data collected

Findings =hits

¢

» For this particular site, at this point in time:

- Database is not the bottleneck (good news)
- 90% of the time spend outside the database

- Real cause: 119 modules enabled! (open buffet
binge)

- Chances are very good that a PHP op-code cache/
accelerator will help (APC, eAccelerator, Xcache)

Accelerators —Bbits

e
‘__.-"

 Also knows as “code caches”

« Parses and tokenizes scripts and stores the result in
memory (or file(s)), and uses them for future requests

« Saves memory, and CPU execution
« Translates into less time per page request

e« Cannot be used with PHP in CGl mode, since it forks
a new process for each request

« Can be used with FastCGl/fcgid, but they have their
own Issues

« Free ones: APC, eAccelerator, XCache

e

Unless ... =bhits

¢

» Accelerators will not help in certain cases

- When it is not just code execution

- Network connections (Web 2.0 widgets, emails,
some ads)

- Sorting of arrays
- Heavy database access
- Combinations of the above

- tagadelic, node access modules, admin_menu,
forum, tracker)

Validation Bits

e
‘__.-"

e Validate the results on 2bits' test server

* Copy the site (MySQL dump and tar archive,
without images)

« Re-create the site

 Measure again and see if the relative times are
about the same

Page execution time was 794.75 ms.
Executed 397 queries in 65.41 milliseconds.

Actions -~ bits

¢

e Enable APC on test server

Page execution time was 469.99 ms. Executed 397
queries in 62.77 milliseconds.

Significant improvement!
 Disabled admin_menu module
- Saves about 150 ms per page

Page execution time was 306.86 ms. Executed 380
queries in 62.21 milliseconds.

« Enable page caching

- Page times less than 100 ms overall

Results =bhits

¢

e On the live site

- Install APC (@ $50 per hour support request,
remember “managed” VPS?)

- Had to disable Zend Optimizer
- lonCube Loader (encoded PHP) left alone
— Outstanding improvement!

Page execution time was 243.84 ms. Executed 314
qgueries in 47.11 milliseconds.

- About 1/4" of the original time

Site Profile =hits

¢

« Complexity

- Many modules: more code and more database
qgueries

— Over use of modules
— Qver use of CCK/Views/Panels
- Makes upgrading problematic too

o Visitor types

- Mainly Anonymous or logged in?

- Anonymous is easy to solve (page cache,
memcache, ...etc.)

Site Statistics =hits

¢

e Do you know how many page views per days
your site gets? (not just visits!)

* Google Analytics

- Measures humans only (javascript)

- Does not count access to feeds

- Nor search engine and spam bots
« Awstats

- Measures everything (also bandwidth!)

- Relies on Apache's Iogs

Resource Utllization =pnits

¢

e Shared hosting tout bandwidth and disk space

- What matters more is CPU and memory
» What is the utilization on your server?

- If you don't know you are in the dark. How can you
justify/recommend a new server?

e Munin
- Graph over time

- CPU, memory, disk, apache, mysql, and much
more

e Cacti

Other tools =hits

¢

 top and htop

- Shows what is running now, and an “at a glance”
view of utilization

e vmstat 5

- Shows snapshots every X seconds
* Free -m

- Memory usage (-/+ buffers line)
e netstat

— Open network connections

Apache =bits

¢

« MaxClients

- To prevent swapping when you are on Digg
« MaxRequestsPerChild

- To terminate the process faster, and free up
memory

» KeepAlive

— Should be low (~ 3 seconds)
* Not the only web server around (lighttpd, ngnix)
— Only FastCGI mode

Database =bhits

« MySQL tuning

- MylISAM vs. InnoDB
- Often needed on large sites

- Query cache must be enabled
— Slow query log, and tools to analyze it

- EXPLAIN on long running statements
« PostgreSQL

- Slower in general due to ACID

e
‘__.-"

e Drupal module

Boost =hits

» Creates HTML for pages and stores it in files
 Requires changes to .htaccess and symlinks
« Usable on shared hosts as well as VPS/Ded.

» Vastly enhances the ability to handle traffic
spikes

« Make sure you TRUNCATE sessions when
installing, otherwise you will see stale pages

» Can Ieave danglmg symllnks |_n the file system

Custom Patching =bhits

..

 Various areas, depending on sites

- Delaying session last access writes (in 6.x core
now)

- Path lookup whitelist

¢

* Requires the Web Developer Extension

Front End =hits

 YSlow FireFox Extension

e Shows you a score card

- Background images in theme
- Number of HTTP requests (.css, .|s, images)

* Not all recommendations may be practical, but
at least you know where time is eaten up

High End Sites =hits

¢

« Splitting the servers

- One for database, and one or more for web server/
PHP

- With a Load Balancer in front
— database replication, master/slave

- More complexity and sysadmin load, so don't jump
Into it without some forethought

Memcached =bhits

¢

* Object cache daemon

 Distributed (more than one server)

 Amazing scalability, specially for anonymous
users

» Requires patching for 5.x

e Two modules:

- Memcache

— CacheRouter

Q Caching Reverse Proxy =hits
« Squid Cache

— Stores static files (css, js, images)
- Needs a patch for HTML

 on 2bits.com for Drupal 6.x
- Vast performance improvement

« Requests never reach the web server, let alone PHP or
the database!

- Intermediate proxies still an issue

e Varnish

- Newer than Squid
. W £

CDN =hits

¢

e Content Delivery Network

- Servers in different locations (e.g. Europe, US East
coast and US West cost)

- Monthly fees, as well as volume fees.
- Pricing varies wildly

- Proximity based, user requests fullfilled from
nearest servers

- Akamai, Panther Express

Q Diminishing Returns =bits
« Often, there are some low hanging fruit that can
be gained quickly with little effort

- e.g. APC in this case study

o After that, it gets harder and harder to achieve
more performance (more effort, less return)

- More infrastructure (split server, multiple web head)
- Patching of Drupal
- Re-architecting the application (e.g. CCK, Views)

« Same for front end tuning. Getting an “A” in
Yslow WI|| COSt ou' L

Final Result =bhits

..

“ am stoked!” -- Mark D.

Further reading =bits

..

Drupal Performance section at

http://2bits.com

Discussion =2bits

Questions?

Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

