
Performance Tuning and
Optimization for Large

Drupal Sites
Jeremy Andrews (Tag 1 Consulting)

Khalid Baheyeldin (2bits.com)
Konstantin Käfer (NowPublic)

Scott Mattoon (Sun)
Narayan Newton (OSU Open Source Lab)

Steve Rude (Achieve Internet)
David Strauss (Four Kitchen Studios)

Scalability vs. Performance

• Performance

• Page load time

• Scalability

• Simultaneous users

• Size of database (including content, users)

Symptoms of Performance
and Scalability Problems

• Often overlapping

• Symptoms of performance problems

• Slow page load times

• Symptoms of scalability problems

• Slow site during times of high usage

• Site slows down as amount of content and
users increases

Finding the Problem

• How do you know you have a problem?

• Wait till users complain (site is sluggish,
timeouts)?

• Wait till you lose audience? Loss of interest
from visitors?

• Different tools for various tasks

Operating System
UNIX and Linux

top

• Classic UNIX/Linux program
• Real time monitoring
(i.e. What the system is doing NOW, not yesterday)

• Load average
• CPU utilization (user, system, nice, idle, wait I/O)
• Memory utilization
• List of processes, sorted, with CPU and memory
• Can change order of sorting, as well as time interval,

and many other things

htop

• Similar to top

• Multiprocessor (individual cores)

• Fancy colors

vmstat

• From BSD/Linux
• Shows aggregate for the system (no individual

processes)
• Shows snapshot or incremental
• Processes in the run queue and blocked
• Swapping
• CPU user, system, idle and io wait
• First line is average since last reboot

netstat

• Shows active network connections (all and
ESTABLISHED)

• netstat -anp

• netstat -anp | grep EST

• Remember that delivering content to dialup
users can be slow, because the other end is slow

Linux

• Use recent versions (no Fedora Core 4 please)

• Use whatever distro your staff has expertise in

• Be a minimalist, avoid bloat

• Install only what you need

• (e.g. No X11, no desktop, No PostgreSQL
if you are only using MySQL, ...etc.)

Operating System

• Use recent versions (no Fedora Core 4, please)

• Use whatever your staff has expertise in

• Be a minimalist, avoid bloat (no Windows)

• Install only what you need

• (e.g. No X11, no desktop, no PostgreSQL if
you are only using MySQL, etc.)

“Compile Your Own” vs. Upgrades

• Compiling your own

• Pros: full control of version, compilation options

• Cons: more work to do security upgrades

• Using packages

• Pros: less work to upgrade security releases

• Cons: whatever version your operating system
has

Web Server
Apache and PHP

apachetop
 Reads and analyses Apache's access log

 Shows all/recent hits

 Request per second, KB/sec, KB/req

 2xx, 3xx, 4xx, 5xx

 List of requests being served

 To run it use:

 apachetop -f /var/log/access.log

PHP

 Use a recent version

 Install an Op-code cache / Accelerator

 eAccelerator

 APC

 Xcache

 Zend (commerical)‏

Op-code caches
 Benefits

 Dramatic speed up of applications, specially complex ones like
Drupal

 Significant decrease in CPU utilization

 Considerable decrease in memory utilization

 The biggest impact on a busy site

 Drawbacks

Op-code caches (cont'd)‏
 Findings

 eAccelerator uses the least memory and provides the most
speed

 Barely maintained (start to lag behind)‏

 APC recent versions are more stable

 APC vs. eAccelerator benchmark on 2bits

 Find the right combination for your setup

APC admin

mod_php
 Normally, Apache mod_php is the most commonly used

configuration

 Shared nothing

 No state retained between requests

 Less issues

 Most tested and supported

 Stay with mod_php if you can.

 Can be as low as 10-12MB per process

 Saw it as high as mid 20s+ (but depends on modules installed) ‏

PHP as CGI

 CGI is the oldest method from the early 90s.

 Forks a process for each request, and hence very
inefficient.

 Some hosts offer it by default (security) or as an option
(e.g. running a specific PHP version).

 Don’t use it!

FastCGI

• FCGI is faster than CGI (uses a socket to the
PHP process, not forking)

• Mostly with lighttpd and nginx, since it is the
only way to run PHP for those servers, but also
with Apache

• There are some cases (e.g. drupal.org itself)
• Better separation of permissions (e.g. Shared

hosting)
• If you have one server and one Linux user,

permissions may not be an issue.

Other PHP Options
• Non-Zend

• Roadsend PHP compiler

• Compiles PHP to native code!

• Source is available, requires Scheme to build

• http://code.roadsend.com/pcc

• PHC

• Not yet complete, but has a Parrot spinoff

• http://www.phpcompiler.org/

http://code.roadsend.com/pcc
http://code.roadsend.com/pcc
http://www.phpcompiler.org/
http://www.phpcompiler.org/

Other PHP Options

• Caucho Quercus

• Implementation of PHP written in Java!

• Benchmarks say it is as fast as PHP with an
op-code cache

• http://quercus.caucho.com/

http://quercus.caucho.com/
http://quercus.caucho.com/

“DTrace is one of those tools that makes you
wonder how you did anything without it before

you'd heard of it.

Why is it better than strace and similar tools? It's
non-invasive, fast, scriptable and extensible.”

- Wez Furlong

Find Hampster Wheels with DTrace
Dtrace provider for PHP

 Which functions are being called by Drupal?
dtrace -n function-entry'{printf("called %s() in %s at line %d\n",\
 copyinstr(arg0), copyinstr(arg1), arg2)}' -q

Find Hampster Wheels with DTrace

Questions you can answer with DTrace

 How many times is a function called?
dtrace -n function-entry'{@[copyinstr(arg0)] = count()}'

 What's the file name and line number count:
dtrace -n function-entry'{@[copyinstr(arg1)] = lquantize(arg2, 0, \
 5000)}'

Database Server
MySQL

Drupal devel module

 Time in database versus total execution time.

 Slow queries, duplicate queries.

 http://drupal.org/project/devel

http://drupal.org/project/devel
http://drupal.org/project/devel

mtop, mytop
mtop / mytop

Like top, but for MySQL

Real time monitoring (no history)‏

Shows slow queries and locks

If you have neither

− SHOW FULL PROCESS LIST

− mysqladmin processlist

run from cron?

innotop
 Inspired by mytop, much more powerful

 Originally InnoDB specific, has become much more

 Server groups, buffer statistics, replication status

 http://innotop.sourceforge.net

http://innotop.sourceforge.net/
http://innotop.sourceforge.net/

mysqlreport

 mysqlreport

 Perl shell script

 Displays statistics

 Does not make recommendations

Slow Query Log

 Has to be enabled in my.cnf

 Lists queries taking more than N seconds

 Very useful to identify bottlenecks

 Best way to interpret it

 Use mysqlsla script

Tuning with mysqlreport (1)‏
 Header:

 version, uptime

 Key (MyISAM)

 Buffer used, high water mark

 Current, actual usage

 Write / Read hits rates are ration of hard drive : RAM

Tuning with mysqlreport (2)
• Questions: SQL queries & MySQL protocol

• DMS, Data Manipulation Statements (includes:
SELECT, INSERT, UPDATE, DELETE)

• QC Hits, query cache

• Com, MySQL commands & protocol

• Below, break down of each

Tuning with mysqlreport (3)‏
 SELECT and sort

 Scan: entire table

 Full join: multiple full tables (tunable: join_buffer_size *) ‏

 Sorts: monitor ”SHOW STATUS LIKE Sort_merge_passes”
(tunable: sort_buffer_size *)‏

 * per-connection memory allocations

Tuning with mysqlreport (4)
• Query cache

• If too big (64M+), can cause MySQL server freezes

• Fragmented? Increase memory (query_cache_size),
or decrease tunable: query_cache_min_res_unit (2k
is a good place to start with Drupal)

• Review Insert:Prune and Hit:Insert

• Can control QC with SQL_NO_CACHE and
SQL_CACHE

Tuning with mysqlreport (5)‏
 Tables

 Same table can be opened by many threads

 More than 1/s? Increase tunable: table_cache

 Monitor memory usage closely when increasing
cache

 Connections

Tuning with mysqlreport (6)‏

 Created Temp

 Want most as table (RAM)‏

 Tunables: tmp_table_size, max_heap_table_size (per-connection memory allocations)‏

 Queries with blobs and large text fields won't fit in RAM

 Threads

Tuning with mysqlreport (7)‏
 InnoDB Buffer Pool

 Rule of thumb: 70% of available memory

 Increase: over 80% used, lower than .1 read ratio,
significant reads from file

 Tunable: innodb_buffer_pool_size

Tuning with mysqlreport (8)
• InnoDB Data, Pages, Rows

• Ratio of Writes to fsync?

• InnoDB defaults to ACID

• Can you afford data loss?

• Tunable: innodb_flush_log_at_trx_commit
(1 = flush every write, 0 = flush every second)

InnoDB Specific Tuning

 Already mentioned buffer_pool size and transaction
flushing

 Data File Settings

 File Per Table

 Autoextend fragmentation

InnoDB Specific Tuning
 Transaction Isolation

 Serializable

 Repeatable-Read (Default)‏

 Read-Committed

 Read-Uncommitted

 MySQL 5.1 improves performance for Read-
Committed

InnoDB at the OSL

 The Open Source Lab (Drupal, Apache, Linux, etc)
migrated most clients and central servers to InnoDB
in early 2007

 Some clients resisted...most didn't notice

 Summer 2007: db3.osuosl.org hardware failure

 No data loss. No data corruption

InnoDB And Drupal.org

 Was converted Spring 2007

 Issues

 Memory footprint

 Clustered indexes

 Search queries

 When is concurrency bad?

Anatomy of an Index
id name age evil
1 David 23 1
2 Maria 25 0
3 Mark 19 0

Root

D M

A

R

I K

3

19

2

A

25

A

V

I

D

1

23

CREATE TABLE IF NOT EXISTS `people` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `name` varchar(32) NOT NULL,
 `age` smallint(5) unsigned NOT NULL,
 `evil` tinyint(1) unsigned NOT NULL,
 PRIMARY KEY (`id`),
 KEY `name` (`name`,`age`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
AUTO_INCREMENT=4 ;

INSERT INTO `people` (`id`, `name`, `age`, `evil`)
VALUES
(1, 'David', 23, 0),
(2, 'Maria', 25, 0),
(3, 'Mark', 19, 0);

What Does This Index Do?
• Allows the following queries to run

efficiently

• SELECT age FROM {people}

• SELECT * FROM {people}
WHERE name LIKE “Mar%”

• SELECT * FROM {people}
ORDER BY name, age

• SELECT * FROM {people}
WHERE name = “Maria”
ORDER BY age

Root

D M

A

R

I K

3

19

2

A

25

A

V

I

D

1

23

MySQL EXPLAIN

mysql> EXPLAIN SELECT * FROM people;
+----+-------------+--------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | people | ALL | NULL | NULL | NULL | NULL | 3 | |
+----+-------------+--------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT age FROM people;
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | people | index | NULL | name | 100 | NULL | 3 | Using index |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM people WHERE name LIKE "Mar%";
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | people | range | name | name | 98 | NULL | 1 | Using where |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.01 sec)

MySQL EXPLAIN (cont’d)

mysql> EXPLAIN SELECT * FROM people ORDER BY name, age;
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | people | index | NULL | name | 100 | NULL | 3 | |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM people ORDER BY name, age;
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | people | index | NULL | name | 100 | NULL | 3 | |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM people WHERE age = 23;
+----+-------------+--------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | people | ALL | NULL | NULL | NULL | NULL | 3 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)

Tips on Index Usage

• MySQL can use an index prefix almost as well as a
complete index.

• Order of index consumption (left to right)
• WHERE clause
• ORDER BY clause
• SELECT fields

• If an index contains all the data for a query, MySQL may
skip reading the table data.

More Tips

• With certain statistical situations, MySQL may use
indexes in non-optimal ways that still surpass table scans
in speed.

• All ORDER BY criteria must be either ASC or DESC.
• It’s hard to do things fast with OR criteria.

• Denormalization is often an option.
• Don’t depend on MySQL using more than one index per

table in a query.
• Don’t put WHERE conditions on one table and

ORDER BY conditions on another.

Engine: MyISAM
• Locks

• INSERTs are table-level (with one exception)

• UPDATEs are table-level

• DELETEs are table-level

• SELECTs wait on write locks

• Other notes

• TRUNCATE is O(1) within MySQL

• INSERT is non-locking and O(1) within MySQL

• The primary key is autoincrement

• No UNIQUE indexes

• This special case is possible because no checking is
necessary for key conflicts with existing rows

Engine: InnoDB
• Locks

• UPDATEs are row-level

• INSERTs are table-level

• DELETEs are row-level

• SELECTs use MVCC, so they never wait on locks

• Multi-version concurrency control

• Keeps revisions around as necessary to satisfy read
requests without waiting for concurrent data changes to
complete

• Other notes

• Even though INSERTs are table-level, they can buffered in
the transaction system

Engine: Quantum

• Locks
• Qubit-level locking

• Other notes
• Highly concurrent
• Zero-latency replication
(Compile option --with-plugins=entanglement)

• Experimental
• Can be monitored using qtop
• Display log files using cat schroedinger.log

Replication
• When it’s the answer

• You have SELECT queries that don't require access to
perfectly fresh data

• You want a server to run backups from without
burdening the master

• You want a hot standby in case of failure of the master
• When it’s not the answer

• If you have high levels of lock contention and you're
looking for performance benefits
• Replication simply runs the data-modification

queries from the master server on the slaves
• So, the exact same locking behavior happens on the

slaves

Data Caching
memcache, APC, Squid

Squid

What is Squid?
 Caching Proxy
 Moonlights as a Reverse Proxy, a.k.a. HTTP accelerator

Why Squid?
 Can (Possibly) Cache Dynamic Pages
 Caches Static Content
 Serves as a connection pool
 Simple and easy to setup

Squid-At the OSL

The Open Source Lab And Squid
 Big Squid users
 Introduced into the lab by Scott Kveton
 We started with little funding. Squid was the only way our
servers could survive slashdot/digg for quite awhile

 Sites that depend on Squid for high-traffic stability
 osuosl.org
 mozillazine.org
 Every host on our shared webserver (60 community sites)‏

Squid-Drupal.org

Deployed during summer 2007 by Eric Searcy
 Caches most static files, allowing us to not have a
static.drupal.org host

 Was a “piece of the puzzle”, but didn't solve our scaling
issues

 Isn't a silver bullet for Drupal deployments

Squid-Limitations with Drupal

Drupal sends inaccurate headers
 Cache-Control headers tell Squid what to cache and for how
long

 Drupal for the most part tells it “not to”
Static vs Dynamic Cache Rates Due to this

 Static Files: 318828/11710 Hits/Misses = 96.5%
 Dynamic Pages: 34551/420339 Hits/Misses = 7%

Squid - As HTTP Accelerator

Squid Configuration
 Very well documented configuration file
 Simple ACL's based on Ports, Header Information
 Your webserver (Apache) is your “cache_peer”
 You listen on “http_port”, with the accel or the vhost option

Apache configuration
 Apache listens on port 8080 for incoming connections from
Squid

 Tweak KeepAlive to take advantage of persistent connections
from Squid

Squid-Issues

Initial configuration makes it seem like a “fire and forget”
solution...
Not so much

 Serving stale files
 Set-Cookie header caching
 “Zero Sized Reply”
 Scalability (lack of)‏
 Differentiation between logged in and anonymous users
hitting the cache

Varnish: http://varnish.projects.linpro.no/

http://varnish.projects.linpro.no/
http://varnish.projects.linpro.no/

Static Page Cache

• Several contrib modules utilize Drupal’s “Early page
cache”

• Modules:
– Boost – http://drupal.org/project/boost

– Fastpath FSCache http://drupal.org/project/fastpath_fscache

• Pros:
–Very fast

–No DB overhead (uses static html)‏

• Cons:
–Not good for dynamic sites with a lot of fresh content

http://drupal.org/project/boost
http://drupal.org/project/boost
http://drupal.org/project/fastpath_fscache
http://drupal.org/project/fastpath_fscache

Drupal 5.x – The Good 

• Current 5.x implementation
• Pluggable ‘cache.inc’

–Easily
r
e
place cache.inc with any type of cache you can dream up. (File, Memory, etc)‏

• Caches full pages for Anonymous Users
–w00t!

• Allows for minimum cache lifetime
–w00t!

Drupal 6.x – The future is now!

• New 6.x Caching features
• Block-level caching!

 Example:

<?php
/**

* Implementation of hook_block().
*/

function mymodule_block($op = 'list', $delta = 0, $edit = array()) {
 if ($op == 'list') {

 $blocks[0]['info'] = t(’Super Rad Block!');
 $blocks[0]['cache'] = BLOCK_CACHE_PER_PAGE | BLOCK_CACHE_PER_ROLE;

 return $blocks;
 }
}
?>

Drupal 6.x – The future is now!

• New 6.x Caching features
• Block-level caching!

Modes available:
• BLOCK_CACHE_PER_ROLE (default)‏
• BLOCK_CACHE_PER_USER

• BLOCK_CACHE_PER_PAGE

• BLOCK_CACHE_GLOBAL

• BLOCK_NO_CACHE

Drupal 6.x – The future is now!

• New 6.x Caching features
• Core cache serialization!

–You no longer have to worry about serializing your data when using the
Drupal cache.

Drupal 6.x – The future is now!

• New 6.x Caching features
• Core cache serialization!

–You no longer have to worry about serializing your data when using the
Drupal cache.

• A clear cache button!
–“…and there was much rejoicing….yay.”

How to cache

• Using caching in your code
Example:

function tagadelic_helper_tag_listing() {
 // Lets first try to get the page from our cache.

 $cache = cache_get('page:tagadelic_helper_tag_listing');
 if ($cache) {

 $output = $cache->data;
 }

 else {
 // If we can't get it from cache then we will run the query.

 $limit = 100;
 // BFQ – This takes a long time to process

 $result['popular'] = db_query("SELECT COUNT(*) AS count, d.tid, d.name, d.vid …”, $limit);

 $tags['popular'] = tagadelic_build_weighted_tags($result['popular'], 3);
 $tags['popular'] = tagadelic_sort_tags($tags['popular']);

 // Last theme the content into a string ready for output.

 $output = theme('tagadelic_helper_tag_listing', $tags, 'taxonomy/term/', 'filter0');

 // Cache page for one hour.
 cache_set('page:tagadelic_helper_tag_listing', 'cache', $output, time() + 3600);

 }
 return $output;

}

Pluggable Cache

• Drupal offers “pluggable” cache.inc

Pluggable Cache
• Drupal offers “pluggable” cache.inc

• Modules that implement “pluggable” cache.inc:

• APC – http://drupal.org/project/apc

• Xcache – http://drupal.org/project/xcache

• Memcache – http://drupal.org/project/memcache

http://drupal.org/project/apc
http://drupal.org/project/apc
http://drupal.org/project/xcache
http://drupal.org/project/xcache
http://drupal.org/project/memcache
http://drupal.org/project/memcache

Pluggable Cache

• APC
• Pros:

–Uses very fast web server memory (no network delay)‏
–Extremely fast

– Simple to implement, no complex setup

Pluggable Cache
• APC

• Cons:
–No shared memory

»Not good for multiple web servers due to cache redundancy and wasted
memory

–Has to
k
eep track of each bin itself which slows it down a bit. (working on fix for this)‏

– Still beta quality code.

Pluggable Cache
• XCache

• Pros:
–Uses very fast web server memory (no network delay)‏
– Fast

–Multithread safe

–Easy to implement

Pluggable Cache

• XCache
• Cons:

–No shared memory

»Not good for multiple web servers due to cache redundancy and wasted
memory

–Has to
k
eep track of each bin itself which slows it down a bit. (working on fix for this)‏

– Still beta quality code.

–No support for complex data types, you have to serialize the data yourself

Pluggable Cache
• Memcache

• Pros:
– Stable code (Drupal module used on FastCompany, LifetimeTV,

NowPublic.com and lots
more
,
 memcache daemon used on Facebook, Slashdot, Wikipedia, Livejournal, etc)‏

– Shared memory – No cache duplication with multiple web servers

– Setup multiple instances, so entire cache flushes clear only their own bins

–Very fast hash lookups

–Takes care of serializing the data for you

Pluggable Cache
• Memcache

• Cons:
–Uses network to connect, so some network delay can occur if not running

locally

–Complex to setup and manage

Load Testing
Evaluating the Entire Stack

Loadtest Module

• Google Summer of Code 2007

• Load testing of Drupal

• Measures timings for discrete components

• Need to write simpletest-like tests

• Has a project page on drupal.org

Stress testing
 How much requests per second can your site handle?

 Are you ready for a digg?

 Do you know your performance and bottlenecks
before you deploy? or after?

 The challenge is finding a realistic workload and
simulating it

 If you find bottlenecks, submit patches

Stress testing (cont'd)‏
 ab/ab2 (Apache benchmark) ‏

 ab -c 50 -n10000 http://example.com

 Requests per second

 Average response time per request

 Use -C for authenticated sessions

 http://httpd.apache.org/docs/2.0/programs/ab.html

http://example.com/
http://example.com/
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html

Stress testing (cont'd)‏
 Siege

 Another HTTP Server load test tool

 http://www.joedog.org/JoeDog/Siege

 Jmeter

 Written in Java

 Desktop

 http://jakarta.apache.org/jmeter/

http://www.joedog.org/JoeDog/Siege
http://www.joedog.org/JoeDog/Siege
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/

Graphical Monitoring
Munin

Nice easy to understand graphs.

History over a day, week, month and year

CPU, memory, network, Apache, MySQL, and
much more

Can add your own monitoring scripts

Cacti

Similar features

Front End Performance

 Another bottleneck: CSS, JS and graphic files
 Can be > 90% of the load time

 Components: CSS, JS, UI graphic files
 Sometimes > 100 components on a page

YSlow
 Firefox addon for measuring front end performance

 Inspects website and looks for:

 Amount of components == HTTP requests

 Use of a CDN

 HTTP headers (Cachability, ETags)‏

 Use of GZip

 Location of components on the page

 Redirects, DNS lookups, CSS exps, duplicate scripts, ...

Drupal Modules
 cdn.module

 Pushes files to a CDN (e.g. CacheFly)‏

 sf_cache.module

 Intelligent CSS/JS aggregation in bundles

 Separate hosts for CSS, JS, UI graphics

 “High Performance Web Sites” (0596529307)
by Steve Souders (affiliated with YSlow)‏

Questions?

Supplemental

What can go wrong?

CPU usage is too high

Memory over utilization

Too much disk I/O

Too much network traffic

CPU

Find out who is using the CPU?

Find out which type (user, system, wait I/O)‏

CPU

 If it is an Apache process, the op-code cache will help (APC,
eAccelerator), unless you have a bad module.

 If it is MySQL, then some of that is normal (intensive queries. lots of
queries), otherwise

 tune the indexes (OPTIMIZE TABLE ...)‏

 split the server to two boxes (web and db).

 Tune the query cache

 If it is something else, and consistent, then consider removing it.

CPU 100%

 Output from Top
top - 10:16:58 up 75 days, 59 min, 3 users, load average: 152.70, 87.20, 46.98

Tasks: 239 total, 157 running, 81 sleeping, 0 stopped, 1 zombie

Cpu(s):100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 2075932k total, 1558016k used, 517916k free, 13212k buffers

Swap: 1574360k total, 49672k used, 1524688k free, 442868k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 659 www-data 21 0 61948 14m 4060 R 3 0.7 0:14.35 apache2

 960 www-data 20 0 62084 14m 4076 R 3 0.7 0:10.51 apache2

 989 www-data 20 0 62036 14m 4052 R 3 0.7 0:09.95 apache2

CPU 100%

 Vmstat output

vmstat 15

 procs -----------memory---------- ----cpu----

 r b swpd free buff cache us sy id wa

 152 0 40868 1190640 13740 465004 22 6 71 2

 153 0 40868 1190268 13748 464996 100 0 0 0

 155 0 40868 1189740 13756 464988 100 0 0 0

 154 0 40868 1189540 13768 465044 100 0 0 0

CPU 100%

 What was it?

 eAccelerator (svn303 + PHP 5)‏

 Attempt to get over PHP
crashes

 Note CPU utilization (100%,
then high, then
drop
p
ed low when good version used) ‏

Memory
• Swapping means you don't have enough RAM

• Excessive swapping (thrashing) is server hell!

• Reduce the size of Apache processes (no SVN
DAV)

• Reduce the number of Apache processes
(MaxClients)

• Turn off processes that are not used (e.g. Java,
extra copies of email servers, other databases)

• Buy more memory! Cost effective and worth it.

Memory

• Impact on memory
usage when there is no
op-code cache vs. with
an op-code cache
(eAccelerator in this
case)

Disk I/O

 First eliminate swapping if get hit by it.

 Get the fastest disks you can, 7200 RPM at a minimum.

 Turn off PHP error logging to /var/log/*/error.log

 Consider disabling watchdog module in favor of syslog (Drupal 6
will have that option), or hack the code

 Optimize MySQL once a week, or once a day

